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Flux difference splitting methods are widely used for the numerical approximation
of homogeneous conservation laws where the flux depends only on the conservative
variables. However, in many practical situations this is not the case. Not only are
source terms commonly part of the mathematical model, but also the flux can vary
spatially even when the conservative variables do not. It is the discretisation of the
additional terms arising from these two situations which is addressed in this work,
given that a specific flux difference splitting method has been used to approximate
the underlying conservation law. The discretisation is constructed in a manner which
retains an exact balance between the flux gradients and the source terms when this
is appropriate. The effectiveness of these new techniques, in both one and two di-
mensions, is illustrated using the shallow water equations, in which the additional
terms arise from the modelling of bed slope and, in one dimension, breadth vari-
ation. Roe’s scheme is chosen for the approximation of the conservation laws and
appropriate discrete forms are constructed for the additional terms, not only in the
first-order case but also in the presence of flux- and slope-limited high-resolution
corrections. The method is then extended to two-dimensional flow where it can be
applied on both quadrilateral and triangular gridse 2000 Academic Press

Key Words:source terms; finite volume schemes; upwind schemes; flux limiters;
slope limiters; conservation laws.

1. INTRODUCTION

There has been much research in CFD into the accurate and efficient solution of hc
geneous systems of conservation laws. More recently, as numerical models become
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90 HUBBARD AND GARCIA-NAVARRO

complicated and the areas of application of these methods widens, it has become impc
that other aspects of the discretisation be given due attention. This is certainly true in
field of computational hydraulics where modelling can be dominated by the effects
only of source terms, but also of quantities which vary spatially but independent of the fi
variables. In this paper methods will be constructed which address both of these issu
a range of situations.

It can be argued that the presence of these effects warrants the construction of new nu
cal schemes which are appropriate to the nature of the equations, rather than the use of «
the many which have been constructed for the simple, homogeneous case. However, th
phasis of this work is on how the additional terms should be discretised, given that a spe
conservative finite volume scheme (Roe’s scheme is used here toillustrate the ideas) has
used to approximate the flux terms, and the main focus is on how the numerical scheme
be modified so that it maintains any balance between flux and source terms which exis
part of the underlying mathematical model, e.g., at the steady state. This approach has
taken previously by a number of authors and applied in a variety of different situations.
example, Smolarkiewicz has adapted his own MPDATA scheme to solve inhomogene
equations arising from geophysical flows [19]; LeVeque has incorporated the modellin
source terms for shallow water flows within his wave-propagation algorithm [14]; Jen
and Muller used ideas similar to those presented here to approximate source terms w
their characteristic-based scheme [12]; and Roe’s scheme [16] has been modified by a
ber of authors to include source terms, the research of Glaister §Zlju&z-Cenali [21],
Bermidez and \dzquez [1], and Berodezet al.[2] being of particular relevance to this
work.

In each of the aforementioned papers discussing Roe’s scheme, the discrete form ¢
source terms has been deliberately constructed along lines similar to the numerical flL
This is done to ensure that equilibria which occur in the mathematical model are retai
by the numerical model, and that in the absence of additional terms, the conservative fl
are retrieved for accurate modelling of discontinuous solutions. The intention of this pa
is to concentrate on finite volume schemes based on the concept of a numerical flux
how the source term should be discretised within such a framework to correctly bala
the resulting flux differences. In particular, it aims to show how these ideas apply to hig
order total variation diminishing (TVD) versions of Roe’s scheme (using both flux- al
slope-limiting techniques) and to describe a source term approximation which has eac
the above properties on all types of regular and irregular grids in any number of dimensi
Furthermore, following on from [5], a new formulation is presented for the discretisation
the flux in the case where it depends on a spatially varying quantity which is indepenc
of the solution.

The shallow water equations have been chosen to demonstrate the effectiveness of
new techniques in one and two dimensions, by modelling the effects of a sloping bed :
in one dimension only, the inclusion of breadth variation in an open channel. The o
dimensional discretisation is described first, for a scalar equation in Section 2 and tl
in Section 3, for a general system of conservation laws, followed by its application to
shallow water equations and a wide selection of results to show its accuracy. In Secti
the generalisation to two dimensions, illustrated using unstructured triangular grids
presented and again applied to the shallow water equations. The final section contains
brief conclusions obtained from the work.



BALANCING SOURCE TERMS WITH FLUX GRADIENTS 91

2. ONE-DIMENSIONAL SCALAR EQUATIONS

The basic ideas underlying the following work can be illustrated by examining a sce
equation,

ut + f(u, X)x = s(u, x), (2.1)

modelling the evolution of a single variablein one space dimensiorf (is a flux ands a
source, both of which depend mias well as1), and looking for (1) away of incorporating the
x-dependence of the flux into the numerical scheme and (2) a discretisation which main
equilibria of the formfy = s (steady state). In essence this requires the flux derivatives ¢
the source terms to be discretised in a similar manner. However, the precise form thisim
for the discrete source term is not always obvious from the flux approximation.

As an example, consider the first-order upwind scheme with forward Euler time-stepy
for the homogeneous equatian=£ 0 in (2.1)) which, in fluctuation-signal form [17], can
be written as

At _
M= - E(Afitl/2+ AfiS1)- (2.2)
|

u I
Note thati here is a cell index, not a node index, so this is not the traditional fluctuatic
signal framework, but instead a device which will be used to illustrate the form that
discrete source terms should take when the equivalent finite volume approach is us
approximate the fluxes. In the case whérdepends on both andx (case 1 above),

af af - .

Afij1p=— AUy + | — AXit1/2 = Aip12AUi4172 + Vig12, (2.3)

U /112 i+1/2
in which A is the advection velocity and is the extra term due to the independent spatic
variation, so the scheme (2.2) is completed by setting

~ 1 - .
Afiz-‘y:—l/z = )»i:‘:+1/2AUi+1/2 + 5 (1 + Sgl‘()»iJrl/z))ViJrl/g, (2.4)

wherei* = 1(X = |X)). In both equations- represents a Roe-averaged quantity evaluats
at a cell interface which is defined to ensure that (2.4) is satisfied. Straightforward algek
manipulation converts (2.2) to an equivalent flux-based finite volume scheme,

At

i H( 12 — fitl/Z)’ (2.5)

in which the numerical flux (denoted by an asterisk) for first-order upwinding is given k
. 1 1 .
it12 = E(fi+1 + fi) — > sgn(Liy12) (fizr — fi)
1 1, - ~ ~
= é(fi+l + fi) — E(‘)\i+1/2|AUi+1/2 + sgn(Ait1/2) Vis2), (2.6)
with a similar expression fof* ; ,. The dependence of the flux @ns incorporated within

the evaluation of the numerical flux. Note that throughout this paper the asterisk indic
an approximation of the flux across a cell face or the source over a cell volume.
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In the case wher= 0 (case 2 above), the numerical scheme (2.2) becomes

At At

1 _
ui”+ = uin — —(Afifl/z + Afi+1/2) + N
A 1

Ax S, (2.7)

butitremainsto defing'. The bold type used here (and later) indicates that it is the integrat
source term which is being approximated, so a factor of the cell length/area is incorpor
within it. In this work the discretisation is constructed so that (2.7) maintains a balance
the form fy = s; i.e., in such situations the discrete form gives

Now, given this equilibrium, at an interface
Afij1p = 5»i+1/2AUi+1/2 + \7i+1/2 =512, (2.9)

as long as the flux and source terms are evaluated in the same way, and at the same int
state (something which should be borne in mind throughout this paper). Comparing (
and (2.9) leads to expressions for components of the source term associated with the
wave speed, which can be written

1 ~ ~ -
Affp= > (L£sgn(kit12))3 412 = Fa)0: (2.10)

and it becomes obvious from the requirement that (2.8) should be satisfied that

S =512+ 51p

= %([1 + sgn(hi—12)]5-1/2) + %([1 —sgn(Aiz12) | §+1/2) (2.12)

is the form that should be substituted into the flux-based form of the complete scheme

At . At
uttt = u' — A—x.< i+1/2 fi—1/2) + A—XiSk. (2.12)

Note thats' is an approximation to the integral of the source term overicelbs*/AX;
represents some cell-averaged value. This alldwsto appear in both the flux and the
source discretisations so that the balance achieved here can be maintained if irre
grids are used. Furthermo®, 1> = §,,,, + §', 1> can be thought of as approximating an
integral across the+ 1/2 cell edge (i.e., over a dual cell rather than a grid cell) so that i
discrete form can be related to, and balanced with, the flux difference across this edge.
integrated quantity then contributes to the cell updates on either side of the edge accol
to the local wave speeds, as indicated in Fig. 1.

This type of discretisation can be used for any type of source term, but it is desig
specifically for equations such as

u2
Ut + (—) = aly, (2.13)
2 X
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FIG. 1. Scalar flux and source distribution within a control volume.

which clearly has a balance whar= u. The extra terms which model variable topograph:
in the shallow water equations give an example of this type of equation. It is less obvi
that this treatment would be beneficial to the approximation of, for example,

Ug + (AU)x = U, (2.14)

which has no spatial derivative on the right hand side, and hence no obvious equilibr
with the flux derivative. Bed friction terms are more akin to this form and, while an upwi
discretisation should still be beneficial, a full investigation is left to future work.

It should be noted that even whaim Eg. (2.13) varies witlk and is supplied analytically,
it should be evaluated at cell interfaces using a Roe-average form of the cell centre dat:
not the exact values there, otherwise the discrete bafarecé would be disturbed and the
equilibrium destroyed.

The above analysis is not restricted to the first-order upwind scheme. For example
cell-based fluctuation-signal form of the Lax—Wendroff scheme,

At

-

AX;
(2.15)

At /1 1
uMtt =l — A% (2 [(1+ vi_a2) Afisye) + > [(1- Vi+1/2)Afi+l/2]> +

in whichv = AAx/At is the local CFL number and f is as in (2.3), leads to the corre-
sponding numerical flux

1 v
fi12 = E(fi+1 + fi) — E(fi+1 - f)
1
2

(friat )= 55000 2) [1— (1= )] (fra— ) (216)
and subsequently to the numerical source
1 =
s =5 [(A+s0n(i-12) [1 = (1= [viv2])] )5 -1r2]
+%[( —sg(Aiv12) [1— (1= liva2)])S+s2]- (2.17)

Approximations now follow automatically for flux-limited TVD schemes, since

frvp = fop + LD (fiwy — fip) (2.18)
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(where the subscripts have their obvious interpretations), which implies that

Stvp = Sip + L(N(S'w — Sp)- (2.19)

In the above equationis(r) represents a nonlinear flux-limiter function, as described i
[13, 20], and

Auupwind

Aulocal > (2'20)

whereAu'°@is the change in across the current cell edge and“P""is the change across
the upwind edge according to the local advection velaciffhe important properties df
are that for smooth flow the accuracy of the scheme is second order (wheg: 1 it gives
the Lax—Wendroff scheme) but near discontinuities and other local extrema of the solu
wherer < 0 the scheme reduces to first-order accuracy in order to avoid the introduct
of unwanted oscillations into the solution.

The limited numerical flux is

1 1 -
fiie = é(fi-&—l + i) — > sgN(kiv1/2) (1= L(riga2) (1= [vigap2|)) (fia — fi) (2.20)

so the corresponding discrete source term should be

1

§ = 5[0+ 59nioa2) [1- L(riv2) (L= oicaze])])3-0r)

2
+ % [(l - Sgr(ii+1/2) [1 -L (ri+1/2) (l - ’Vi+1/2‘)] )§+1/2] . (2.22)

In the slope-limited case, the numerical sources are (a) evaluated as in (2.11) but L
the reconstructed solution values at the cell edge and (b) augmented by a correction
which arises due to the linear variation of the solution over the cell. The latter modificat
is necessary because whereas previously

Afijap+ Afi_gp = (fipa 4+ ) + (fi + fi_p), (2.23)
it is now only true to say

Afivyz + Aficye = (10 + flhye) = (FRu2 + fly) —2(f502 — f2402),
(2.24)

where the superscripts R and L represent evaluation on, respectively, the right and left |
sides of the interface indicated by the associated subscript, so the numerical source te
defined to be

S = (Biy2 +8112) — 83Uy URyp)- (2.25)

The first term on the right hand side is evaluated precisely as in (2.11) except that
interface values are now those of the MUSCL reconstruction of the solution within e:
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cell. The second term is evaluated at the Roe-average state over the cell (indicated
by ~), which ensures that

§(Uillrl/zv uiR—l/Z) = fiil/z - fiR:l/Z (2.26)

at equilibrium (as was done in (2.9)), so the balance is maintained with the final tern
(2.24) within celli. As will be noted later, the correction term could be improved awa
from the chosen equilibrium.

It should be noted that the TVD condition which the flux and slope limiters have be
constructed to satisfy applies to homogeneous equations, and the inclusion of source:
means that spurious oscillations (i.e., those which appear simply as numerical artif:
not as part of the actual solution in the presence of source terms) may appear in the
solution. This problem has yet to be fully addressed.

These ideas are discussed more thoroughly in the following sections, in the prac
context of the shallow water equations, where it is shown how they extend to nonlin
systems of equations in one and more space dimensions on arbitrary grids, althoug
emphasis is placed on steady-state and nearly steady problems.

3. ONE DIMENSION

The one-dimensional equations representing a system of conservation laws with sc
terms may be written

U+ FE=S (3.1)
where U is the vector of conservative variableB,is the conservative flux vector, arfsi
includes all of the source terms. In this section it is assumedihatF(U); in Section 3.2
the flux will be assumed to depend not only on the conservative variables but also anc
independent, spatially varying quantity, i.€&,= F(U, b(x)).

Using the standard finite volume approximation of the flux terms in (3.1), combined w
a simple, forward Euler discretisation of the time derivative leads to a difference sche
which can be written

At . At
UMt = up - E(Ei—&-l/Z = Flip) + ax o (3-2)

in which F* represents a numerical flux evaluated at an interface between control volul
andS* ~ [ Sdx is a numerical source integral over the control volume, which has yet to
approximated. For convenience, a cell centre scheme in which the control volumes coir
with the mesh cells has been considered throughout this work, although the ideas mz¢
applied to other types of schemes in a similar manner.

At first sight, the second term on the right hand side of (3.2) looks like a discrete f
derivative for celi. However, for the purposes of this work it is more convenient to consid
it from the point of view of the numerical fluxes being constructed from an approximati
to the integral of the flux derivatives over dual cells and providing contributions to the c
updates £ x; comes from the integration of the original equations over the control volum
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FIG. 2. Numerical fluxes and sources for the cell centre scheme.

CommonlyS' is evaluated pointwise, taking the valtie; S(U;), or split symmetrically,
giving an expression of the form

AX

5 =2

(§(Qi_1/2) + S(Ui+1/2)), (3.3)

but a more sophisticated approach is sought here, based on the approach of Glaiste
which accounts for the form of the numerical fluxes.

Note that in the absence of source terms the scheme given by (3.2) reduces to a cons
tive discretisation of the homogeneous system. Also, (3.2) has been written with irreg
grids in mind, and as a consequence the mesh spaoing- x; 1,2 — Xi—1/2 relates to the
cells, not the nodes (see Fig. 2).

Roe’s scheme [16] is one of the most commonly used examples of the conserve
finite volume method mentioned above. This is an upwind scheme which uses an
proximate Riemann solver to decompose the flux terms into characteristic component
diagonalisation of the homogeneous part of a linearised form of the system (3.1), wt
is

U +AU, =0, (3.4)

whereA ~ d F/aU is the linearised flux Jacobian of the system. The Riemann problel
arise at the interfaces between the control volumes (the mesh nodes in this case) v
discontinuities occur in the discrete representation of the solution.

Application of Roe’s Riemann solver results in a decoupling of the linearised equatit
that splits the flux difference so that it can be written in a number of equivalent forms; i
at an interface

N

AFi 1o = AAU) 12 = (RARTAU) 12 = (Z &kikfk> , (3.5)
k=1 i+1/2

in which A F represents the jump iR across the edge of a control voluniis the matrix
whose columns are the right eigenvectty®f A, A is the diagonal matrix of eigenvalues
J of A, and the components & 1A U(=AW) are the strengthg, associated with each
component of the decompositiolV( being the vector of characteristic variables of the
system). The final expression indicates how the flux difference is decomposel,into
characteristic components (or waves of the Riemann problem), vihgigthe number of
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equations of the system (3.4). In both (3.4) and (3.5) (and throughout the rest of this pa
~ denotes the evaluation of a quantity at its Roe-average state [6, 16]. This is a sp
average state of the flow variables which is constructed so that (3.5) is always satisfie
the given system.

Having obtained the decomposition (3.5), we construct Roe’s scheme for a homogen
system of equations from (3.2) by taking the numerical fluxes to be

1~ ~ ~
(Fiat E) = S(RIAIR AU (3.6)

NIl =

Ei*+1/2 =

where|A| = diag(|’«|); the source terms have been temporarily ignored. A similar expre
sion can be written down foE}"_; ,.

Choosing the Roe-average state (represented hysatisfy (3.5) means that the resulting
approximate Riemann solver is an exact solver for this local linearisation of the Riem
problem. More importantly, in the context of this work, when (3.5) is combined with (3.
the nodal update scheme given by (3.2) is equivalent to the fluctuation-signal style sct
[17] mentioned earlier and given by

At e o <o At
Uit =up - o [RARTAU)i12+ RATRTIAU) 10) + L
| |

in which
- 1 -~ -
A* = é(A:i:|A|). (3.8)

This splits the update into contributions related to right-gotapand left-going ) charac-
teristics in the decomposition. It follows that the solution is updated using only contributic
from the wave perturbations of the Riemann problems at the nodes which enter the cel
der consideration, as illustrated in Fig. 3. It remains to choose an appropriate form for
numerical source term integraf.

3.1. Source Terms

This work follows much recent research into source term discretisation, see for exan
[1, 5-7], which has concentrated on the use of a characteristic decomposition of the
shown in (3.5). This similarly projects the source term integral onto the eigenvectors of

L L 4 L L L
i—1 ) i+1
i-1 i+3

FIG. 3. Wave propagation directions in a control volume.
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flux Jacobiar, so that in its linearised form it can be expressed as

Xit1 - ~ o~ ~ Nu -
/ Sdx ~ Sii1/2 = (RRTS)i 1 = (Z ﬁkfk> ) (3.9
% i+1/2

k=1

where By, the coefficients of the decomposition, are the components of the Veci&:
Note that the integral approximated in (3.9) is over a dual cell of the mesh (associated
the interfacei + 1/2) and can be easily incorporated within the fluctuation-signal fort
of the finite volume scheme given by (3.8 will be constructed out of contributions
from both ends of the cell, with consistency assured as long as the whole of each dua
integral (3.9) is distributed. Note that the only extra expense incurred by the decomposi
is the evaluation of the coefficient in (3.9); all other quantities are already evaluated fo
discretising the flux terms.

The terms on the right hand side of (3.9) may be called upon to balance componen
the flux differenceA F (3.5) so they must be linearised in the same way to ensure that,
the chosen equilibrium state,

Fy—S=0= AF 3, —5.12=0 (3.10)

throughout the domain. This follows because at this equilibrium the decompositions (:
and (3.9) have been constructed to gV® AU = R~1S (or alternativelyajix = fi).
Hence~ still represents the evaluation of a quantity at the Roe-average state. In fact
important that the numerical fluxes and sources are evaluated at the same state in or
maintain the balance which the discretisation has been constructed to satisfy.

As a result of the characteristic decomposition (3.9), the source terms may be discre!
in an “upwind” manner (although, since none of the components has an inherent upv
direction, this must be taken from the corresponding flux component) and the analysi
the scalar equation presented in Section 2 can now be repeated for this system. This
straightforwardly to an appropriate upwind fluctuation-signal formulation for the first-ord
scheme (3.7) with source terms, given by

At [~ ~ & ~ 1w ~ o~ ~ g~
uMtt=up— A—Xi[ RAATRAU = 1"R™9))i 412 + (RATRTAU — ITR7IS))i 1],
(3.11)

in which1= = A~1A%. The correct balance follows immediately from (3.10).

It is not immediately clear though, how the discretisation of the source term implied
(3.11) can be converted into a numerical source integfrab that the same balance can be
achieved within the flux-based form of the scheme (3.2), particularly when it is extenc
to a higher order.

The difficulties which arise (and the solution to the problem) can be highlighted
following the transformation of (3.11) into an equation corresponding to (3.2). With a sm
amount of algebraic manipulation, similar to that carried out in Section 2, (3.11) becon

At
LJinJrl - uln - ZAXi

[(RAART*'AU — R8))i112 + (RAARTIAU — R719))i_1)2]

At ~ o~ o~ - i~
+ Sax [(RIAIR™*AU — sgn)R™1S))i 112

— (RIAIR™*AU — sgnhHR™1S))i_1/2], (3.12)
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in which sgr(l) = A~1|A]. Since (3.5) and (3.9) hold, and
AFij1p+ AR 1 =(F 1+ F)—(F+ F_, (3.13)

it follows that the scheme (3.12) can be simplified to

At . At = ~
uptt=up - TXi(EH—l/Z — Flyp) + H(§i+l/2 +871))- (3.14)

From the above expressions and (3.5), the numerical flles,, andF;"_, ,, are precisely

those defined by (3.6) and the numerical source term integral of (3.2) is given by

S =8,1+5" 1 (3.15)
where
. 1 - e = o 1o
Siy12 = E(R(I —=sgn1)R™"S)iy1/2 = (RITRTS)i41/2 (3.16)
and
~ 1- o an a e
Sy2 = 5(RU+sgRTS)i 12 = RITRTIS)i 0. (3.17)

Thus, following the procedure outlined in Section 2, a source term discretisation has |
found which, by construction, will ensure that the appropriate equilibria of the underlyi
mathematical model are maintained by the numerical scheme. The method is closely re
to that proposed by LeVeque [14]. However, he constructs new states for the conserv
variablesU within each cell whose differences balance the source term internally bef
the Riemann solver and any higher order corrections are applied. Here, the source
is decomposed and explicit expressions are constructed for its evaluation in terms o
flow variables. In this manner, any underlying balance in the equations being modelle
automatically passed on to the discrete form. It is even more closely related to the wor
Jenny and Muller [12] who also propose the consideration of source terms as edge-k
quantities which should be distributed to the cells. However, they considered a character
based scheme whereas this work applies to flux-based finite volume schemes and add
a specific problem of maintaining a precise balance between flux and source terms.

Note that because the numerical source integral cannot, in general, be written as
ference, nothing similar to (3.13) can be applied to it to allow it to be included within t
numerical flux (3.6). This means that the balance which is sought between flux derivat
and sources in the flux-based scheme can only be obtained locally by balancing non:
fluxes through the edges of a control volume, and not by setting each edge flux to z
One important consequence of this is that the most sensible method of applying the bo
ary conditions to the numerical scheme is through the addition of ghost cells, since
requires no further correction to maintain the balance which is sought. The distributior
the numerical fluxes and source term components is shown in Fig. 4.

It is of course possible to overcome the above problem when the source term take
form of a derivative. If this is the case the source simply augments the conservative flu
the scheme (3.2); i.e., giveB=G,,

F— F -G, (3.18)
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FIG. 4. System flux and source distribution within a control volume.

andS* becomes obsolete. In some cases it may also be possible to incorporate some
of the source term that can be expressed as a derivative within the numerical flux, and
apply an appropriate discretisation to the remaining component of the source.

3.1.1. Flux-limited schemesThe approach presented in the previous section is no di
ferentfrom the standard upwind technique for approximating source terms when afirst-o
upwind flux discretisation is being used [6]. The only new aspect is the way it has b
written, splitting the dual cell source integral into two parts. Usually though, accuracy
higher than first order is required for practical calculations.

The accuracy of Roe’s scheme is improved, without introducing spurious oscillations i
the solution, by the application of flux-limiting techniques [13, 20]. These ensure seco
order accuracy in smooth regions of the flow, while enforcing a total variation diminishi
(TVD) property. It is achieved by including a high-order correction term in the numeric
flux, which becomes [18]

1 1~ ~ =~
Fiiae=5(Fia+ F) = SRIALR AUy, (3.19)

in whichL = diag(1 — L(rg)(1 — |w])), wherey, = XkAt/Ax is the Courant number as-
sociated with th&th component of the decompositidnis a nonlinear flux-limiter function,
as described in [13, 20], and

~upwind
a p

e = K. (3.20)

&Local

Within (3.19),d°% would be evaluated at the+ 1/2 edge, whilexy™"" is found at the
upwind edge according to the velocity at edgd + 1/2.

It is clear that if a balance is to be maintained a corresponding high-order correct
must also be made to the source term approximation, and its form can be derived sir
by comparing the numerical sources of (3.16, 3.17) with the numerical fluxes in (3.6),
of which have been split into two parts which are balanced separately. The flux limite
only applied to the second part of the numerical flux, so the flux-limited numerical sou
which maintains the balance achieved by the first-order discretisation takes the form

~ 1 ~ ~ i~
Sit12 = E(R(l — sgnHL)R™'S)i 4172, (3.22)

with a similar expression foisﬁ_l/z in (3.15). Note that this work is concerned more with
maintaining equilibria between the flux and source terms than with constructing higher o
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FIG. 5. Flux and source evaluation for the MUSCL scheme.

approximations of the source terms on their own so thabtlezall scheme gives better
numerical solutions. Also, since (3.21) is an edge-based quantity, it is simple to eval
with the fluxes and include within the numerical model with only a small increase in ovel
expense.

3.1.2. Slope-limited schemesThe same balance is slightly more difficult to achieve
when the high-resolution scheme is constructed using a MUSCL-type slope-limiting
proach [22]. This is because the underlying representation of the solution is now take
be linear within each cell so that (3.13) is no longer true. It can, though, be replaced by
more general expression

AEi+l/2 + AEi—l/2 = (EiR+1/2 + E=_+1/2) - (EiR—l/z + Eg_—l/Z) - Z(Ehl/z - EiR—l/z)v
(3.22)

where the superscripts R and L represent evaluation on, respectively, the right anc
hand sides of the interface indicated by the associated subscript (as shown in Fig. 5).
corresponding numerical flux is

. 1 1~~~
Ei+l/2 = E(EiR+l/2 + E='+1/2) - §(R|A|R lAU)iH/Z’ (3.23)

in which the Roe averages are now evaluated from the reconstructed piecewise linear
tion. An appropriate correction must therefore be made to the numerical source within ¢
cell, and this leads to

S = (:ill/z +Si+—l/2> - S<L—JiL+1/2’ UR1j0)- (324)

The first term on the right hand side is evaluated precisely as before, in (3.15), except
the interface values are now those of the MUSCL reconstruction of the solution wit
each cell. The final terrB is simply the source term integral approximated over the me:
cell (cf. (3.9)); it is indicated by~ because it is evaluated at the Roe average of the Ie
and right states of the linear reconstruction of the solution within the cell. In terms of
approximation (3.10) the extra term can be thought of as a correction to the integral of
source term over the dual cell arising from the linear variation of the approximation.

3.2. Spatially Dependent Fluxes

In some situations the flux may depend on quantities other than the flow variab
and the numerical scheme needs to be modified appropriately. Only one extra spa
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varying quantity will be considered here, but the approach is easily extended to any nun
Returning to Eqg. (3.1) and taking = F(U, b(x)), whereb varies independent of,
requires a modification to the characteristic decomposition, so that (3.5) becomes

AFi 1= AAU+ V)i
= (RAR'AU + RR™W)i 1/

Nu Ny
= (Z oAl + Z J~/kfk> , (3.25)
k=1 k=1

i+1/2

whereV ~ %Ab andy, the coefficients of the decomposition of this extra term, are tt
components oR~1V. Equation (3.25) gives a set &, equations inN,, + 1 unknowns,
which are taken to be a set of consistent Roe-averaged independent variables frotd whi
andb (and all other variables) can be evaluated. This leaves one degree of freedom w
can be used by enforcing F — S = 0 at an appropriate state of equilibrium.

Following the same steps as earlier in Section 3 to transform the fluctuation-signal sch
to the flux-based scheme, but including this extra term in the flux difference, leads
precisely the same form for the scheme as when approximating the homogeneous s\
as shown in (3.2), but with new expressions for the numerical fluxes, given by

1 1~~~ . o~
Fliae=5(Fii+ F) = SRIART AU+ RsgnOR WV)isae, (3.26)
in the first-order case,

1 1. . - ~ .~
Flp= E(Eprl + F)— E(RIAILRflAQ +RsgnLR™V)iy1p0,  (3.27)

when the flux-limited high-resolution scheme is being used, or

1 1o oo N .-
Fiiaz =5 (Flaz + Fhip) = S(RIAIRTAU + RsgnhR™ V)i, (3.28)

for the MUSCL scheme, where the averages are now calculated from the linearly rec
structed solution. By including this extra term in the numerical flux it is possible to avc
altering the form of the source term, as was suggested in [15].

3.3. Shallow Water Flows

The shallow water equations have been chosen as the system of equations to illus
the use of these new techniques. In one dimension, shallow water flows through a |
angular open channel of varying breadth and bed slope are modelled. The effects of
friction may also be included and, as described in Section 3.1, are simple to treat wi
the new framework without disturbing the balance between the other source terms an
flux derivatives. However, since it is this balance which the new discretisation has b
constructed to maintain, friction is not included in the following discussion. The remaini
system can be modelled by the equations [3]

U+F =S (3.29)
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Side view Plan view

FIG. 6. The shallow water flow variables.

where

u—(bd) F= bdu S= 0 (3.30)
= " \bdu)" =7 \bd?+ igb?)’ = \igdby + gbdh ) '

which leads to

d
a

T

0 1 oF 0
(gd —u? 2u> ob (—;gd2>

In these equationd is the depth of the flows is the depth of the bed below a nominal still
water levelpb = b(x) is the channel breadth,is the flow velocity, andj is the acceleration
due to gravity. These quantities are depicted in Fig. 6, along syithe height of the free
surface above still water.

Equation (3.30) provides an example which includes source terms and a spatial de
dence on channel breadth which is independent of the flow. Furthermore, the balance v
has been sought in previous sections is illustrated by the steady state represented b
water @ = h andu = 0), in which case the system (3.30) reduces to

I

1 1
(égbd2> = EgolzbX + gbdh,. (3.32)
X

This exhibits precisely the type of balance which has been focused on in this work.
The characteristic decomposition (3.25) for the one-dimensional shallow water equat
(3.30) and (3.31) is completely defined by

G = A(sd) ~(A(bdu)—uA(bd)) Gy = %bd)—im(bdu)—umbd))
Mm=0+¢ I,=0-2¢8
(3.33)
f_ (1 (1
1= fl+6 s 2= 0_¢
Y1 = —41963Ab, Po= 41963Ab,
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and it is easily shown that (3.25) is satisfied exactly when

VORARUT + VbEdEut -, VBRAT + VbRt
VORAR 4+ vbbdt T VOR+ Vb )’
which reduce to the Roe averages for the one-dimensional shallow water flow describe

[6] in the absence of breadth variation (i.e., wh&n= b‘). The corresponding decompo-
sition of the source terms (3.9) then leads to

b= (3.34)

B1= 41963Ab + %B&Ah =B, (3.35)
In order for (3.16) and (3.17) to maintain the correct balance, i.e.,
Gk + 7k —Bk=0 VK, (3.36)
or equivalently,
RARTAU+R W -R 15 =0 (3.37)
when the flow is quiescerit,is constructed so that it satisfies
bAh = A(bh) — hAb, (3.38)

whereh is evaluated in a manner similar to that in whiths evaluated
VbRhR 4 Vbtht
VOR+ Vbt

sothatd = h = d = h throughout the domain. Note that this also requiresdtatdh are
reconstructed in the same manner if the MUSCL high-resolution scheme is used.

h= (3.39)

3.3.1. Numerical results.The results presented in this section have been chosen
illustrate the improvement in the approximation using the new techniques by focusing
the following:

e The ability to maintain quiescent flow,

e The accuracy of approximations to both continuous and discontinuous steady s
solutions, and

e The accuracy of simple time-dependent approximations.

These have been studied using a variety of channel geometries. The following one-dir
sional results are presented on regular grids but all of the tests have been run on rand
perturbed grids with very similar outcomes.

The geometry for the first test case was proposed by the Working Group on Dam-BlI
Modelling [4], and the bed and breadth variation of the channel (of length 1500) are depit
in Fig. 7. The upwind source term treatment described in this paper is compared witha i
simpler pointwise discretisation in Fig. 8 (using a uniform 600-cell grid, soAlxat 2.5),
which shows graphs of water surface level and unit discharge for the numerical steady s
which result from quiescent initial conditions & d — h = 12.0 andu = 0.0) and simple
non-reflecting boundary conditions. In this case the initial (still water) conditions shot
be maintained indefinitely by the numerical scheme.
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FIG. 7. Breadth and bed variation for the tidal flow test case.

A comparison is made between first-order, slope-limited, and flux-limited schemes c
bined with pointwise and upwind source term discretisations: in all high-resolution ca
the Minmod limiter [20] has been applied. The upwind source term discretisations alw
produce the correct steady-state solution, exactly to machine accuracy and indisting
able from the exact solution in the graphs (even on irregular grids). This is true not ¢
for the first-order scheme (which has been achieved previously) but also for the h
resolution TVD schemes using any flux or slope limiter on any grid in the presence
bed slope and breadth variations. The pointwise discretisations show small discrepa
(a central discretisation of the source term was also tried but produced even worse re
than the pointwise approximation and is not presented here), most notably in the unit
charge, a quantity which depends on the flow velocity. In each case the method desc
in Section 3.2 is used to discretise the fluxes where the channel breadth varies.

The second channel geometry used in this work (shown in Fig. 9) is defined over
interval [0.0, 3.0] and has a smoothly varying depth and breadth, given by

1.0 — (1.0 — byin) coS(r(x — 1.5 for|x — 1.5 < 0.5
b(x) = { ( min) (7 ( ) | . | < (3.40)
1.0 otherwise
wherebpin is the minimum channel breadth, and
1.0 — ZmaxCOS (T (X — 1.5 for [x — 1.5| < 0.5
h(x) = { max (7 ( ) | . | < (3.41)
1.0 otherwise

in whichznaxis the maximum height of the bed above the level 0.0. This has been chosen
as a simple channel geometry for which exact steady-state solutions to the one-dimens
shallow water equations are available for comparison [8]. The parameters chosen to d
the channel here amg,,x = 0.1 andby,i, = 0.9. A uniform 150-cell grid has been used for
each computation.

Three flows (each defined by a local Froude numbemnd a depthd for the flow) are
compared:

e F, = 0.5, dy, = 1.0, giving purely subcritical flow which is symmetric about the
throat of the constriction (the most narrow poixt= 1.5),

e F, =0.6,d,, = 1.0, giving transcritical flow with a stationary hydraulic jump down-
stream of the throat and a critical point at the throat, and
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FIG. 8. Water surface level and unit discharge for quiescent flow in a channel with variable bed and brea
see Fig. 7, for first-order (a, b) and high-resolution slope-limited (c, d) and flux-limited (e, f) schemd®00).

e Fo, = 1.7,d, = 1.0, giving purely supercritical flow which is symmetric about the

throat.

The subscripto represents the freestream flow values at infinity which are used in t
application of simple characteristic boundary conditions at inflow and outflow. The rest
of the comparisons for each of the schemes are shown in Figs. 10-12. The graphs :
the variation of total discharg® = bduand depthd through the channel. Discharge is a
quantity that should remain constant at steady state and therefore gives an easily visus
indication of the accuracy of the approximation.
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FIG. 9. Breadth and bed variation for the sine channel test case.

In each case the upwinded source terms can be seen to model the solution bettel
the pointwise evaluation. This is particularly noticeable in the subcritical case where
latter is unable to attain a symmetric solution. The position and strength of the hydra
jump is predicted accurately by all of the schemes, although there is a small discrep:
in the discharge at the discontinuity in every case. Note that in the second-order
small oscillations appear in the upwinded, slope-limited solution. These are not prohib
by enforcing the TVD condition because this only applies to the homogeneous equati
although they appear in neither the first-order nor the flux-limited results. This indicates
the correction term of (3.24) may require modification away from the still water steady st

One might expect that using the decomposed source term with a first-order upv
discretisation to balance would produce a good balance when combined with a TVD
cretisation of the flux terms. However, Fig. 13 shows that this is clearly not the case
that the TVD correction needs to be applied to the discrete source term as well. Fur
evidence of the improved modelling of the new flux-limited scheme can be found in [:
where it is compared with a number of other methods.

In the subcritical case, a series of runs has been carried out to indicate the accuracy
scheme. Thé&, errors in these results are plotted against mesh size for the various so
term treatments and shown in Fig. 14. Only the first-order and flux-limited schemes
compared, because the slope-limited results did not converge to a steady state. This ¢
to be because the reconstruction procedure creates discrepancies between the discre
and source terms away from the still water steady state. The upwinding of the sol
term produces indistinguishable results in both the first, and higher order cases (sugge
that the upwind discretisation is actually second-order accurate at the steady state)
differences are only seen in the time-dependent results when the higher order sch
show their advantages. In all cases the accuracy is dramatically improved by the upwin
(and the order of accuracy is always increased to second).

The speed of convergence to the steady state is indicated in Fig. 15 and it can be see
the rates of convergence achieved with the pointwise and upwind evaluations of the sc
term are very similar (the slope-limited results did not converge). This was seen for al
the channel flow test cases run.

In [21] it is shown that for a short channel (of length taken here to be 1500) and
low-speed flow, given the initial conditions

d(x,0 = hx), q(x,0) =0, (3.42)
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FIG.10. Discharge and depth for the steady, subcritical, symmetric constricted channel test case for first-c

(a, b) and high-resolution slope-limited (c, d) and flux-limited (e, f) schemes.

whereq = du is the unit discharge anl(x) is indicated in Fig. 7, and the boundary

conditions
d(0,t) =h(0) + ¢ (), q(L,t) =y (), (3.43)
a first-order approximate solution to Eg. (3.30) can be expressed as
d(x,t) = hXx) +¢()
(3.44)

P'(t)

b(x)

L
qx. ) = Y (t) + / b(s) ds.
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order (a, b) and high-resolution slope-limited (c, d) and flux-limited (e, f) schemes.

The quiescent flow case considered earlier corresponds to taking= v (t) = 0.
A time-dependent tidal flow test case was suggested in [21] for which

21,600 (3.45)

t — 10,80
o) = 4+4sin<(0”)
and ¢ (t) = 0, the asymptotically exact solution being given by (3.44). The exact a
numerical solutions (all computed on the same regular 600-cell grid) to this problem w|

t =10,800 are compared in Fig. 16. The surface level of the flow should be nearly cons
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at any time due to its low velocity, but this is the time when the inflow velocity is at i
maximum. This problem is particularly difficult because of the huge running time for tl
calculation (involving>100,000 time-steps) so even the smallest oscillations introduc
numerically are amplified and distort the final solution.

The agreement is very close for the first-order and both of the higher order sche
when the upwind source discretisation is used. The only problem is seen when the sl
limited scheme is used, since it requires a much stricter practical bound on the CFL nun
for the solution to remain free of unwanted oscillations (a value of 0.1 was used comp:e
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FIG. 16. Water surface level and unit discharge for the tidal flow test case for first-order (a, b) and hi
resolution slope-limited (c, d) and flux-limited (e, f) schemes.

with 0.8 for the other schemes, a severe practical restriction). At a CFL number of
the slope-limited scheme exhibits similar accuracy in this case, whether combined \
the upwind or the pointwise source discretisation. At shorter experiment times, thou
upwinding the source terms proves to be considerably more accurate. Furthermore, th
curacy of the slope-limited scheme depends on the variables to which the slope limitin
applied. Minor discrepancies appear in the balance due to the method by which the soll
is reconstructed, and these cause small oscillations which amplify over time. The prob
does not seem to be due to any reduction in the stability range of the scheme caused t
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presence of the source terms since the solution remains bounded even for a CFL numl
0.8 (although the sources are likely to have some effect on the scheme’s stability, an i
which has been discussed elsewhere; see for example [9]). In the steady-state test
shown earlier this extra restriction does not apply. This problem is also affected by the
that the TVD condition is designed to apply in the absence of source terms and that
we are only ensuring that the flux terms, when considered in isolation from the sour
are being discretised in a TVD manner. These problems do not arise in the first-order
flux-limited cases. As in the still water test, even though the pointwise source discret
tion gives a reasonable approximation to the depth, it is very poor at predicting the f
velocity.

One final test case, suggested in [14], is used here to show that the method also v
well in the modelling of wave propagation problems. The channel geometry is similai
that of the second case above, but it is defined on a channel with no breadth variatior
of length 1.0, where the bed topography is defined by

10-02 —0.5)/0.1)+ 1.0 f —-05 <01
hoo = { S(cos(r(x ~05)/0.1) +10)  for|x—05| < (3.46)
1.0 otherwise
The data are initially stationary = 0), with a surface profile defined by
h for0.1 0.2
d(x) = { (X) +¢€ or < X < (3.47)
h(x) otherwise

Two cases have been run= 0.2 ande = 0.01. Both sets of initial conditions are shown
in Fig. 17. The solutions obtained using upwinded source terms with the flux-limit
(CFL=0.8) and slope-limited (CF&0.2) schemes agree closely with each other ar
with the solution obtained using the flux-limited scheme on a much finer grid. The we
surface levels at time= 0.7 are shown in Fig. 18, obtained on a 600 cell uniform grid wit
simple transmissive boundary conditions, and compared with a 2400 cell solution. M
importantly, even in the case of the smaller disturbance, the noise is negligible and the
has propagated with no visible distortion.

a 1P b 125
0.75= 0.75=
g £
] (]
[=] s [=] .
05 05
025 025
1 1 0 1 1
0 025 05 0.75 1 025 0.5 0.75 1
X X

FIG. 17. Initial water surface level and bed variation for the wave propagation test ease8:2 (a) and
€ =0.01 (b).



114 HUBBARD AND GARCIA-NAVARRO

a 112 b 14006.-

Fine mesh B Fine mesh
1.1 ° Filux limited S a Flux limited
o Slope limited 1.004 ¢ ° Slope limited

1.002

Surface elevation

0.998 =

AP RN R
0'9960 0.25 Q.5 0.75 1

X

FIG. 18. Water surface levels obtained using the high-resolution flux- and slope-limited schemes, both \
upwinded source terms, = 0.7 for the wave propagation test cases: 0.2 (a) ande = 0.01 (b).

4. HIGHER DIMENSIONS

The following analysis is presented for the two-dimensional case but can be app
simply in three dimensions as well. The conservative form of a system of conservation |
with additional source terms is expressed as

U+ F +G,=S 4.)

in which there are now two flux vectors, denotedby= F(U) andG = G(U). The case
where the fluxes depend on a quantity other than the flow variables is not presented |
having no obvious application to two-dimensional shallow water flows, but can be de
with in a similar manner to the one-dimensional case presented in Section 3.2.

A combination of a standard finite volume approximation of the flux terms on an arbitr
polygonal mesh (although only triangular and quadrilateral meshes will be considere
the results) and a forward Euler discretisation of the time derivative leads to the conserv:
difference scheme,

Ne
Ut = up - ?/_.t > s (Fq.Gh) -+ \A/—it§i* (4.2)
I=1
whereV; is the area of the chosen control volunig,is the number of edges it ha%m is
the outward pointing unit normal to the edge common to éedisdl (wherel represents a
generic neighbouring cell) ardd is the length of that edge (as shown for a triangular mes
cellin Fig. 19).S8* ~ [/, Sdx dy is once more a numerical approximation to the sourc
integral over the control volume. For simplicity we will again assume the scheme to be a
centre discretisation in which the control volumes coincide with the mesh cells, althot
the techniques may also be applied to other types of schemes. The following analys
similar to that presented in previous sections for the one-dimensional case.

4.1. The First-Order Scheme

The numerical fluxes which lead to the first-order Roe’s scheme in two dimensions
given by

3 1 3 1 ~o~ o~
(F;.G) -y = E(Ei + F.G +G) -y — E(R|A|R AU, (4.3)
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FIG. 19. Numerical fluxes and sources for the cell centre scheme.

in which the e|genvectors and eigenvalues needed to confrant A are now those of
the matrixCp, = (A B) n, where

(=5
T

A~ and B~ (4.4)

(@3]
IC
D
\c‘\o

are the linearised flux Jacobians. It can be seen that the numerical flux is similar in fort
that used in one dimension (3.6). In particutaragain denotes the evaluation of a quantity
at its Roe-average state.

Since the two-dimensional scheme is based on Riemann solvers oriented perpendici
to the edges of the grid cells, the decomposition also bears a strong resemblance to the
dimensional case. Once more, as long as the quantities deroted evaluated at the
appropriate Roe-average state [16], the flux differences can be written in the decomp
form

Sb

A(E.G)-fi=ChAU =RARAU =} adufi, (4.5)

from which it follows in much the same way as in one dimension that the scheme (4.Z
equivalent to

At
urtt=ur - — Z s (RARIA V) + — s (4.6)
Vi =1

where the superscript now indicates the incoming characteristics at the appropriate ed
of the control volume (see Fig. 20). It is easily seen that this reduces to (3.7) when restri
to one dimension.

The terms within (4.5) may again be required to balance the flux difference, so the s
Roe linearisation is used in their evaluation, and it follows that

F+G,—S=0= (A(F.G)-i— Sy =0, (4.7)

throughout the domain®;, is the edge-cell corresponding to the edge betweenicahsl
I, as shown in Fig. 20. The three-dimensional case is similar, with all the approximati
being carried out over a face-cell with the solution being assumed constant on either <
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edge-cell il

i’
]

ok
N

FIG. 20. Wave propagation directions (left) and source distribution (right) within a triangular cell in tw
dimensions.

The two-dimensional source term can now be written as a characteristic decompos
similar to that of the flux difference (4.5); i.e., its linearisation can take the form

Nuy
Si = (RR'S)) =4 (Z Bkﬂ) : (4.8)
il

k=1

Evaluating this at the same Roe-average state as the flux difference means that the
rect balance is attained because, at equilibrium, the decompositions ARe*AU =
R~1S. S will be constructed out of contributions from each edge of the cell, with consi
tency ensured as long as the whole of each edge-cell integral (4.8) is distributed.
The decomposition has been carried out so that, when (4.6) is combined with (4.8
give
At &
UMt = U — = Y (REARTAU - I"R9)), (4.9)
Vig
a precise balance can be achieved when one is sought between the sources and tf
gradients.
The relationship between the two forms of the finite volume scheme, (4.2) and (4.6),
now be exploited. Substituting for in (4.9) gives

N,
At e L .
Ut =ur - 2V, Z(R(‘SAR&AQ - RS
=1
N
At e L L
T ov > (RGIAIRAU — sgnhR ). (4.10)

=1

In addition, it is easily shown that

Ne Ne
> AELG) - =) (F+ F.G +G) - i, (4.11)
1=1 I=1

in which AF;,, = F, — F; is the jump inF across théth edge of cell (and similarly for
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G). Therefore, since- indicates evaluation at the Roe-average state, (4.5) holds and (4.
can be rewritten as

I\

At oAt

UMt = U7 = 3 (LG - i + S (4.12)
=1

in which the numerical fluxes are given by (4.3) and the numerical source is
Ne
S = Zgﬁ, (4.13)
1=1
where

Si = %(?«I —sgn1)RS)y = (RI"R!S);. (4.14)

These expressions bear a close resemblance to the numerical fluxes and can be incorp
into the flux-based scheme in a similar manner at little extra expense. The special cast
structured rectangular mesh gives simplified expressions, which are described and af
in a separate publication [10]. As in one dimension, it is not possible to combine the sol
term completely with the numerical fluxes.

4.2. High-Resolution Schemes
When the accuracy of the scheme is increased by the use of a flux-limiting, technic
the numerical flux takes the form
3 1 3 1 ~o~ o~
(F§, G -t = 5(Fi + F,Gi + G - i — S(RALR™ AU, (4.15)
and the appropriate discretisation of the source term can be shown to be

§i = %(fm —sgnhLR S, (4.16)

by arguments similar to those used in one dimension.
For a MUSCL-type slope-limited higher order numerical scheme, the numerical flu;
take the form

3 1 oy 1 ~o~ o~
(Fi,G i = S(Fy + Fi,Gy +Giu) - M — 5 (RAR LAV, (4.17)

in which the subscriptd andiL represent evaluation of the piecewise linear reconstructic
of the solution on, respectively, the inside and the outside of the edge betweenarsdls
I, relative to celli (indicated in Fig. 21), giving new values from which the Roe averag
at the interface are calculated. Now, instead of (4.11) the flux differences satisfy the n
general expression

Ne Ne Ne
Y OAELGY) i =Y (Fy+ Fi,Gy +G) - fin —2) (Fy — Fi,Gy —G)) - fi.
=1 =1 =1

(4.18)
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FIG. 21. Flux and source evaluations for a two-dimensional MUSCL-type scheme on triangles.

Consequently, the numerical source term appropriate to this type of scheme is given &

Ne

S => (5 —-5wu,.u), (4.19)

=1

where ~ indicates the evaluation of the source term integral at the Roe average of
specified conservative variables (taken from the linear reconstruction at the midpoint
the cell edges) arf:aT is taken directly from (4.14). This can again be considered as applyi
a higher order correction to the integral of the source term over the edge-cell.

4.3. Shallow Water Flows

In two dimensions the shallow water equations including the effects of varying bed sl
are obtained by substituting

d du dv
g:(m>,5= d+ 9% | G= duw : (4.20)
duv dv? + g—gz

wherev is the flow velocity in they-direction, in addition to the variables defined for (3.30)
and

s= | gdh | . (4.21)
gdhy

into (4.1). The matrixC, can be calculated simply from these for any edge orientation.
Whend = h andu = v = 0 (quiescent flow in two dimensions) the desired balance
given by the equations

<%¥>X=gﬂk (%?>y=gdm- (4.22)

The discretisation should satisfy (4.22) exactly in this special case.
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The characteristic decomposition is now carried out on the eigenvectors of the me

(A, B) - A, which are
0 1
fo=|—-€Cn|, fs=|0-¢n"], (4.23)
cn® v —¢nY

1
fi= {0+ [,
¥+ EnY

in which (n*, nY) = A and

c g(dR +db) a VdRUR +dtut . VdRoR 4 Vdbot (4.23)
= _—, = N vV = . .
2 VdR + v/d- VdR +v/d-

The superscripts R and L indicate here the evaluation of a quantity on either side of a
edge, at its midpoint. The corresponding expressions for the eigenvalues (wave speed

A =0n"4+onY +¢& iy =0n"4+onY, Az =0n*+nY —¢, (4.25)

and the wave strengths,

ay = %d + %(A(du)nx + A(dv)nY — ({@n* + onY)Ad)
&y = %((A(dv) — 3Ad)N* — (A(du) — GAd)NY) (4.26)
a3 = %d — %(A(du)nx + A(dv)nY — (@n* +nY)Ad),

complete the decomposition (4.5).
In this case, in order to provide the desired balance, the source term is written

0 0
S= (gd) V-(h,0)+ (0) V- (0, h). (4.27)
0 gd

At first glance this seems counterproductive, but it immediately allows the source t
integral over an edge-cell to be approximated in a manner which will allow the discr
balance with the flux integral. This leads to

0
Si =& | gdAhn* |, (4.28)
gdAhnY

which is used to obtain the coefficients used in the characteristic decomposition (4.8
this case these are

~ 1 ~ ~ 1
fr=58ah f2=0, fa=—,EAh. (4.29)
By construction, it follows thatx — Bk = O for eachk; i.e.,
RGARTAU-R 1§ =0 (4.30)

when the flow is quiescent, and the numerical balance is ensured.
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4.4. Numerical Results

The test cases presented in this section are all related to those described in Section &
the one-dimensional schemes, but applied to the two-dimensional shallow water equat
For the purposes of presentation, comparisons will often be made between breadth-ave
solutions for channel flows and exact solutions to the corresponding one-dimensional p
lem. These will obviously differ slightly in the non-quiescent cases due to the simplificatic
inherent in the one-dimensional model, but they still provide an accurate guide when
crossflow velocity is small, as it is in the results presented. The Minmod limiter [20]
again used in all high-resolution calculations.

The ability of the new techniques to maintain the still water steady state is illustrated us
the geometry of Fig. 7 and a triangular grid with 4854 cells and 2738 nodes (giving ab
300 cells along the channel, or roughly half the one-dimensional grid resolution). As in
dimension, the upwind source term discretisation maintains still, flat water indefinitely
machine accuracy in both the first-order and the high-resolution cases, see Fig. 22. Tl
true of any geometry and bed topography and each of the schemes described earlier
text. The pointwise evaluation of the source term is clearly unable to match this.

Results for the tidal flow test case described in Section 3.3.1 are shown in Fig. 23 for
same triangular grid. Again, the advantage of using the upwind source term discretisati
clearly visible and here, unlike in one dimension, the CFL number used to obtain the res
is still 0.8. When the source terms are upwinded the results from the high-resolution sch
are almost oscillation-free. The averaging across the channel breadth does produce a
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FIG.22. Breadth-averaged water surface level and unit discharge for the two-dimensional still water test
for first-order (a, b) and high-resolution slope-limited (c, d) schernes1000).
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FIG. 23. Breadth-averaged water surface level and unit discharge for the two-dimensional tidal flow test
for first-order (a, b) and high-resolution slope-limited (c, d) schemes.

amount of smoothing, butit can be seen from Fig. 24, which shows a scatter plot of the w
surface level from side on, that this smoothing is not significant and that oscillations do
appear in the solution when the source terms are upwinded. Even the slope-limited scl
gives good results at a CFL number of 0.8. This appears to be because the numerical «
diffusion which occurs on the triangular grid smooths out the small oscillations which ¢

appear and counteracts their growth over long times, rather than the absence of the s
terms representing breadth variation.
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FIG. 24. Scatter plots of water surface level for the tidal flow test case for first-order (a) and high-resolut

slope-limited (b) schemes.
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The last test case presented is again taken from [14] and demonstrates the ability c
new method to model wave propagation problems. The computational domain is the
square [0:1, 0:1] and the bed topography is defined by

h(x, y) = 1.0 — 0.5 exp(—50.0[(x — 0.5)2 + (y — 0.5)?]). (4.31)

The data are initially stationamy = v = 0), with a surface profile defined by

h 001 forQ1l 02.00<y<10
d(x, )={(X’y)+ <X<B500=Y= (4.32)

h(x, y) otherwise

The water surface levels obtained using the flux-limited (EML8) scheme on a uniform
100 x 100 square grid, and the slope-limited (also GFQ.8) scheme on a fairly uniform
5218 node, 10170 cell triangular grid, are shown in Fig. 25 at a time).7. They both
show that this small disturbance propagates over the variable bed without any interfer
from numerically induced noise and they agree with the results presented in [14].

FIG. 25. Water surface levels for the two-dimensional wave propagation test case @ using upwinded
source terms with a flux-limited scheme on quadrilaterals (a) and a slope-limited scheme on triangles (b).
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Generally, it has been seen that the properties exhibited by the schemes in one dime
are carried over into higher dimensions. Extensive results obtained for the two-dimensi
flux-limited schemes on rectangular meshes, which confirm these observations, ca
found in [10].

5. CONCLUSIONS

In this paper a new method has been presented for the discretisation of source terms
they appear as part of a nonlinear system of conservation laws. Specifically, the co
approximation to the source terms is sought, given that a particular finite volume sch
has been used for the discretisation of the flux terms. Roe’s scheme has been chosen t
the underlying numerical scheme, but the philosophy behind the source term approxim:
(that the source terms must, in some sense, be discretised in the same manner as tt
derivatives) may also be applied to other finite volume methods. The discretisation bt
on the work of many previous authors [1, 5-7], who approximated their source term:
a manner which took into account the flux discretisation and, as a consequence, allc
the numerical model to maintain specific equilibria which are satisfied by the mathemat
model. The new aspect of this work is the generalisation of these techniques to h
order TVD versions of Roe’s scheme (using both flux limiters and slope limiters) anc
arbitrary polygonal meshes in any number of dimensions. The methods have been des
specifically for source terms which provide some sort of balance with the flux derivativ
Even so, the same techniques can easily be applied to other source terms (such as
which model bed friction in the shallow water equations) which do not exhibit a preci
balance, but the advantages over the simple pointwise discretisation are less obvious.

The effectiveness of these techniques has been illustrated using the one- and
dimensional shallow water equations (the extension to three-dimensional systems of ¢
tions is straightforward, though not described here in detail), in which source terms
used to model variations in the bed topography and (in one dimension) channel bre:
Particular attention has been paid to the special case of still water, and the schemes
been constructed so that they maintain this state. In fact, the improved accuracy o
new upwind discretisation of the source terms is also shown in the approximation of o
steady-state solutions, particularly in one dimension when flux limiters have been used
to a great extent by time-dependent test cases as well. These improvements were als
on non-uniform grids. The improvement is less marked for slope-limited schemes, ir
cating that a more sophisticated approximation to the source term may be necessary
from the still water steady state. This has been shown by comparison with a selectio
test cases for which exact solutions are available. The advantages over the commonly
pointwise discretisations are particularly apparent when quantities depending on the
velocity are compared. In the high-resolution schemes the new source term approxim
also gives a great improvement over the first-order decomposed source term.

At this stage of the research, the main problem with the new technique (a problem wi
also applies to many previous methods) is in the modelling of time-dependent proble
Here, in order to avoid spurious oscillations in the slope-limited results, a low CFL num!
hasto be imposed (0.1 inthe casestested here), and in some cases the unphysical oscil
cannot be removed completely. These oscillations are very sensitive to the variables to w
the reconstruction of the solution is applied since changing the reconstruction can alte
balance between terms. Even so, over short time scales the source term correction aj
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in the slope-limiting case still improves significantly on the pointwise discretisations. Ti
problem is also related to the TVD condition satisfied by the scheme, which is only rez
intended for the homogeneous equations. It is encouraging that these problems hav
ariseninthe flux-limited cases. The possible construction of a TVD condition in the prese
of source terms is a topic for future research. In the meantime it may prove beneficie
some cases to apply a flux-corrected transport approach since it is clear from the techni
presented in this paper how the source terms should be treated for both upwind and |
Wendroff schemes, and the first-order upwind scheme appears to be robust enou
eradicate the unwanted oscillations.

Finally, an alternative method has also been proposed for the discretisation of the
term in the case where it varies spatially but independent of the flow variables (as with
dimensional models of shallow water flow through a channel of variable breadth). It |
been shown that, in combination with the source term approximation, the method prodt
accurate solutions for a wide variety of steady-state and time-dependent test cases.
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